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IT - SIMITARTTY WITH RESPECT TO STATIONARY POLAR COORDINATES

By Howard Z. Herzig and Arthur G. Hansen

SUMMARY

Solutions of mainstream flow patterns for three-dimensional, laminar,
incompressible thin-boundary-layer flows (over flat or slightly curved
surfaces ) having similarity with respect to statiomary polar coordinates
in the plane of the surface are derived. The solutions are summarized in
a table. :

INTRODUCTION

Conslderable attention has been devoted in laminar-boundary-layer = _. _
research to theoretical solutions of the two- and three-dimensional
incompressible-boundary-leyer equations using the "simillarity" approach.
In this method, the partial differential boundary-layer equations are
transformed by means of a similarity perameter 1n and rewritten in terms
of functions of 1, thelr derivatives, the mainstream velocity components,
and their derivatives. Solutions are then sought for the mainstream flow
conditions for which the transformed equations reduce to ordinary differ-
ential equations for the functions of 1 (refs. 1 to 10). Some experi-
mental evidence is presented 1n reference 10 in support of this kind of
theoreticael development for laminar flows. Reference 11 presents a sys-
tematic approach to similarity-type solutions using & generalized simi-
larity paremeter. As a result, reference 11 has obtained solutions for
the permissible mainstream flows for all the boundary-layer flows having
classical similarity with respect to stationary rectangular coordinates.
The present report is an extension of the work of reference 11l. Solutions
are sought for the mainstream flows in stationary cylindrical coordinates
for 21l the boundsry-layer flows having classical similarity with respect
to the polar coordinates in the plane of the surface.



a,b,c,C
F,F(n)
iy
G,G(n)
g,8(r,8)
k,m,n
r,e,y

U,W
u,v,w
W

Yl

v
Subscripts:

1,2,3, . .
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SYMBOLS
constants
function of similarity parameter, u = UF'(q)

erbitrary function -
Wat(n) for W#£ O

function of similerity parameter, w
function of coordinates r and 6 -
constants

polar coordlnates

mainstream velocity components in 6,r directionms,
respectively

boundaery-layer velocity components in 6,y,r directions,
respectively

function of coordinates r and 6, w= WG'(n) for W= 0
similarity varieble, n = yg(r,8)/A/v

coefficient of kinematic viscosity

index numbers

Primes denote differentiation.

ANATLYSIS

Boundary-Layer Equations in Stationary Polar Coordinates

The three-dimensionsl laminasr, incompressible, thin-boundary-layer
equations in stationary cylindrical coordinate form for flows over flat

T
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(or slightly curved) surfaces with coordinate axes as shown in this sketch

y
A
U,uv
W,w
r
6 =0
are given by
uw | u du du %u _UW L Ud U
T+—g—+WB—+VF ayz=?+-£'g-e-+W$ (1a)
2 2 2
—-%; + B.%E + W’B— + v %E 2w w = - %? + g oW W-g— (1b)

Y

where u, w, and v are the boundary-layer veloclty components in the
@, r, and y directions, respectively.

Equations (la) and (1b) are the boundary-lsyer flow equations in the
tangential and radial directions, respectively. Consistent with the
restriction to thin-boundary-layer flows for flat (or slightly curved)
surfaces, the mainstream velocity components are

U

)

U(r,6)

W

W(r,e)



4 ' NACA TN 3832

The continuity eguation for the bounddgtry-layer flow 1s given by

%%+%+¥+%—§=O N (1e)

The boundary conditions are
u=w=v=0 for y=0

u U (14)
as y - o
w > W

Transformation of Equations Using Generalized 1

The method of search for symmetric solutions described in reference
11 suggests exact solutions (i.e., solutions for flows having similarity
with respect to the polar coordinates r,0 in the plane of the surface)
of equations (1) can be obtained as a result of transformations to new
coordinates r, 8, and 17 where the space variasble 1 1s of the form

n=-L g(r,6) | (2)

In the rectanguler coordinate systems, when either component of
mainstream flow equals zero, straight malnstream flows result, and the

boundary-layer flow is two-dimensional with no secondary-flow overturning.

In polar coordinates when U = 0, the mainstream flows are straight and
u =0 (ref. 12). However, wvhen U # 0, there is curvature of the flow
streamlines even though W = O, and three-dimensional boundary-layer
overturning does result. In polar coordinates, as will be seen subse-
quently, it will be necessary to treat separately the cases of W =0

and W # O.

W # 0. - FPollowing the rectangular-coordinate-system anelyses
(ref. 11),

UF'(n), U#£ 0O (3a)

w= Wet(n), WO (3b)

£
]
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The conditions on F' and G* required to satisfy boundary conditions
on u and W are

F'(0) =G*(0) =0

lim F'(n) = 1°
Tl - o (4_.3_)

lim G'(n) =1

N = e

Now v may be determined by integration of the continuity equation
using equations (3):

- 13U UJd L oW d 1ln W
V=Jgﬁ[(;;ﬁ';1%—g)F+(§;'W—sl~—g+;)G]'

5_%%5. JF* - W_B_%%_s_y(}, + £(r,0) " (5)

Rig

In order that v =0 for y =0 as required, it is possible with-
out loss of generality to set the boundary conditions

F(0) =G(0) =0

and : (4b)
f(r,8) = 0

(See appendix C of ref. 11 for a discussion of the necessary and suffi-
cient boundary conditions.)

Upon substitution of equations (3) and (5), equation (la) becomes

(W #0)

%I(F'G'-GF“-l)+%§%(F‘Z-FF"-l)+Wa—%§—g(F'G‘-l) +
Uding® cw WO In g® v W aew 2o -
o TSe - FF o+ g S5t R - S0P - gPF" = 0 &

and equation (1b) becomes

Ud 1In W 9

T 90

B~
&

FG" +

2
%; (1 -~ Ft2) + (FtGt - 1) + %¥ (G2 - gg" - 1)

U Blngz n _V_\[a 1ln " W 1" At _
Ir o ¢ tpT oy O6 -G - g% =0 (7)
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The purpose of this Investigetion 1s to determine mainstream flow
solutions for which the transformed equations (6) and (7) reduce to
ordinary differential equations. As Iin reference 11, the mainstream flow
conditions that make the coefficient of the functions of 1 proportional
are sought. Under these ordinary-differentiasl-equation conditions
(abbreviated to o.d.e. conditions), the common variable terms in the
equations may be divided out, leaving ordinary differential equations for
F and G. (The actual numerical solutions of the ordinary differential
equations are not attempted herein.) Although coefficients of similar
functions may be grouped and mede proportionasl, the two techniques can be
shown to be equivalent.

For convenilence, the coefficients for the functions of 17 in equa-
tions (6) and (7) are presented here in the order of their appearance.
With W # 0, they are:

@ f ®
®iy @ &
® wiir? ® &
© 2B oY

W3 1ln g%
@ 2 or
The o.d.e. conditions regquire these nine coefficlents to be pro-

portional to each other. The most genersl case, W = W(r,8), can be
solved readily. From o.d.e. conditions on @, @, and @,

W= clU (8)
c,U '

2 _ 2

g =< (9)

C
BU _ 3 (10)

U=el £() (11)

LLT¥
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From o.d.e. conditions on () and ® , using equations (8) and (11),

£1(xr)
1 -c, = (12)
flfrs 4r
Therefore,
c
£1(r) = cgr ¢ (13)

Using equation (9) and redefining the constants involved for convenience

permits W, U, and gz to be written Coe—

brl eme

W(r,0)

U(r,0) arDeld (14)

g%(r,0) = cri-lemd

No further restrictions on the forms of W, U, and g are required
to satisfy the o.d.e. conditions for the remaining coefficients @, @,
®, and @ . Substitution of equations (8) and (9) indicates that (@
and @ are already proportional to @ , while @ and @ are proportional

to @ .

In addition, further analysis shows that the remaining possible main
flows W= W(r), W= W(6), or W = constant ¥ O can be obtained from
equations (14) by suitable choices of n, m, a, and b. For example,
when m = O, :

W(r) = br?

art (15)

U(r)
g2(r) = crt-l

The ordinery differential equations for W(r,0) # O now can be
obtained by substitution of equations (14) into equations (6) and (7);

1t
b(n + 1)(F'G* - 1) + am (F'z - -FFT- - ) - M.n_'é;_sl GF" - ¢cF" = 0O

(16)
2 "
2 (1-72) +en (F'G' B 1) +bn (G'2 - 1) - MEZ*'_QGG-- - ™2 0

(17)
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W=0. - When W= 0, the corresponding boundary-layer equations
(1) become - -

. 2
& WF*“%'“%”%%; (182)
2 2 -
u u ow ow ow o%w g2
'T+?¥+ng+v?y_va—y2=£'? (18b)

The equation of continuity for the boundary-layer flow remains unchanged;

I‘B— ? +g—;—0 N (1C)

The boundary conditions now are - _
u=w=v=0 for y=
u->U (18c)
as 'y 9+ o
w0
For main flows such that W= 0, u and w are defined as follows:

u = UFt(y) (19a)

v = Wat(n) (19v)

where W = W(r,8) # O. The boundary conditions on F! and Gf required
to satisfy boundary conditions on u and W in equations (18)
(W =0, W(r,8) £ 0) are

F1(0) = 6*(0) = 0

lim Fi(n) = 1

T]-)m

(20a)

1im G*(n) = O

n—hm

The expression for v obtained by integration of the continuity
equation (lc) is the same as equation (5) with W being replaced by W;

oo aE gz p(F 52pme, Tl

%i%ﬁyw_ aln yat + £(r,0) ) (21)

[t
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As before, the boundary conditions chosen as sufficient to provide
that v =0 for y =0 are —

F(O) = G(0) = 0
(20b)

£(r,8) = O

Substitution of equations (19) and (21) into equations (18a) and (18b)
produces

.g (F'G* - aF") +_% %% (F'2 - FF" - 1) + W.é-%E—g F'G' + — ‘J é_%g_&f o B
i(l_p%#galnwp@+ (612 - ag") - LU ggv
= 3 St r 36

1
The argument concerning determination of the o.d.e. conditions by
means of relations between the coefficients of the functions of 1 in
equations (22) and {23) remains unchanged. These coefficients, it may be
noted, are the same as the coefficients for equations (8) and (7) with W

replaced by W. Thus, the expressions for 'W, U, and gz can be written

W(r,0) = brfe™ for b # 0
W=20
$ (24)
U(r,6) = arlem®
g2(r,8) = cri-leme /

The resulting ordinary differential equations are (W = 0O)

1
b(n + 1) F'G' + am (#'2 - Egl - 1) - 319;%—§l GF" - cF" =0 (25)

2 "
% (l - FIZ) + an (F'G' - -F%-) + bnG!2 - bgn'lz' 3) GG" - cG™ = O

(286)



10 - NACA TN 3832

RESULTS AND DISCUSSION

The analysis of three-dimensional, leminar, incompressible, thin-
boundary-layer flows having similarity with respect to polar coordinates
has led to solutions for mainstream flows described by equation (14) or
(24). As a result of this analysis, teble I has been prepared, which
summarizes the two cases of mainstream flows over a flat or slightly
curved surface for which the boundary-layer flows have the required
similarity.

As described earlier, secondary flows exist even when the radial

component of mainstream flow vanishes; W = 0. For such cases & function

W(r ) % 0 1is defined and the boundary-layer radial component of
flow ls expressed as

=WG'(n) (19p)

The table presents these two cases W# O and W= 0, W# 0, for the

corresponding forms of the tangential comporient U = U(r 6), which permits

a solution by reduction of the boundary-layer equatiorns to ordinary dif-
ferentlal equatiochs.

Meinstream

When W # O, the mainstreams are spiral flows. For W = 0, circular
mainstream flows are obtained.

UZW{W - In regions where the thin-boundary-layer theory is applica-
ble, the mainstream is very nearly parallel to the surface; U and W
are functions of r and 6 only.

The analysis shows that for the similarity solutions considered here
only one form of U and W (or W) is possible; that 1is,

U= arneme

W (or W) = brie®® -

When W = O, by choosing m = O (case I), many of the most frequently _
encountered flow distributions can be obtained by suiteble choices of n.
Corresponding to n = -1 1is free-vortex flow; for n = 1, wheel-{ype
flow. 1In all cases, W/U or W/U are constants.

LIT%
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Projection of mainstream on surface. - The equation for the projec-
tion of the mainstream on the surface may be obtained by integrating

W dr e
T~ ae (27a)
for each case yielding
by |
r=c6ea _ : (27b)

The slope of the projected streamline with respect to 6 = O obtained from

dr b —
r + — tan 6 — tan 6 + 1 .
de a
slope = —_ = - (28)
dr b
= - r tan 6 — - tan 6 -
de a8 - — —_—— .

is found to be independent of radial position r.

Irrotationality. - For the malnstream flows considered in this in-
vestigation and in regions of thin boundary layers (as assumed for the
analysis), only the component of vorticity normal to the surface

10W oU U ' -
ro6 or T o

can be much different from zero (ref. 11). The values of the constants
specified under the chart listing "Irrotationality"” were obtained in each
case from Y

1dW oU U -
I .- 2o (m-an-a) a0 (29)

These values serve to set the conditions for nearly irrotational main-

stream flows. S

Boundary Layer

As discussed in reference 11, the physical interpretation of the
boundary-layer behavior that the mathematical representations purport to
describe is best found by examining the behavior of 1 and, in particu-
lar, g(r,0). The boundary-layer thickness was shown (ref. 11) to be L
inversely proportional to g. In order for the theoretical boundary layer —
to have a beginning at a leading edge, as in a real fluid, there should,
therefore, be & line along the surface for which g{r,0) is infinite.
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In the solutions presented here, this occurs in the finite part of the
plane only at the point r = O for values of n < 1. For n > 1, the
boundary layer may be considered to have & beginning only at r = w3}
there the mainstream velocities take on "infinite" wvalues.

Ordinary Differential Equations -

The actual numerical solutions of the ordinary differentlal equa-
tions are beyond the scope of the present investigation. The literature
contains examples of numerical solutions that have been calculated for
particular values of the constants. GSome of these examples are noted in
the listing "Comments and references" associated with each case in the
chart.

The present analysis then serves only to diéplay the ordinary d4if-
ferential equations that can be obtained with the underlying assumptions.
In any particular case of interest for which the equations are appropri-
ate, the existence of the numerical solution and its computation must be
obtained individually. Nevertheless, some general remarks can be made
here (as in ref. 11) concerning the numerical solutions.

Separation of F and G. - Under certain choices_of the free con-
stants involved, the functions F and G are separable; that is, one
equation of the pair of ordinary differentiel equations will contain
terms in only one of these functions and its derivatives. Numerical
solutions are much more readlly obtalned in such cases than when the
functions are not separated. It can be noted from the table that by
choosing & = O in case I, equation (17) contains only terms in G and
its derivatives. This corresponds to maeinstreams having no tangential
components of flow. BEquation (17) becomes a Falkner-Skan type equation
with known solutions (refs. 1 and 2). Although it is not apparent from
the equations in the table alone, when a = 0, in case I, them u =0
(ref. 12), equation (la) disappears, and so‘does ‘equation (16). Such
flows are really two-dimensional flows originating from a stagnation
point and flowing out along straight radial Tines.

Linearity in u or w. - As discussed in reference 11 and applied
in reference 10, an extension of the solutions beyond gtrict similarity
of the velocity component can sometimes be made by additlon of solutions
where the boundary-layer equations are linear in u or w. Such exten-
sions are not possible for the boundary-layer flows investigated here,
because equation (1b) is always nonlineer in u and in w except for
the trivial case of no mainstream flow. -

11T%
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CONCLUDING REMARKS

Solutions are obtained for the mainstream flow patterns for boundary-
layer flows heving classicel similarity with respect to stationary polar
coordinates. The results are summarized in the tgble. The exact solu-
tions obtained are beset with the difficulty that their boundary layers
have no proper leading edge in the finite part of the plane, whereas in
turbomachines a definite leading edge is generally required. Neverthe-
less, the analysis enables a study of the properties of the boundary-
layer flows and may have direct applicability when attention is confined
to appropriate regions of the flow.

The solutions are considered completed for the sake of this investi-
gation when the boundary-layer equations have been transformed into ordi-
nary differential equations. The actual numerical solutions for the
ordinary differential equations so derived are beyond the scope of this
work. '

There are three configurations of main-flow streamlines for which
the similarity solutions here could be obtained. The mainstream may be
(1) a stagnation-type flow out along radial lines from a stagnation
point, (2) spiral flow out from (or in toward) a central point, or (3)
circuler flow. By sultable cholce of the free constants involved, the
flows may include at will cases of acceleration or deceleration in the
radial or tangential directions. The solutions obtained here thus con-
stitute an extension of the similarity solutions obtasined in reference 11
for rectanguler coordinate systems.

Lewis Flight Propulsion ILaboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 24, 1956
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TABIE I. - SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES

CASE 1
WAO
u aI,Tlel'l'le
W br%e™, b X 0
n-1_me\1/2 1/2 1
or~ e e\ L/ ow\1/2
n A\ = V\yax], =7J\ybp) o CKO
n
Orainary {16) b(n+ 1)(F@' - 1) + am(F'2 W 1) BRI ) A
differential
equatlons a "
(17) &(1 - m2)+ am(F'G' - - 1) +bn(@? - 1) - Blet Sl agn  om .o

Boundary F1(0) = G'(0) = F(0) = @(0) = 0; 1im F'(N) = lim G*(N) =1

conditions N+a -

by

Projection of| r = ce® , 8piral flow streamlines, (a g 0)

mainstream

on surface
Irrotation- [bm -~ an - a = O

ality
Linearity {(la) m=10

in u
Linearlty Ela. Linear

in w 1b) Always nonllnear
Separation (18) Not pesaibls for this oass, (b £ 0)

of P (17) a=0

G
Comments and |& = O, stagnation flow. Eq. (18) vanishes. Eq. (17) becomes a Falkner-

references Skan equation, whioch ir completely solved 1n refs. 1 and 2.

Ref. 3: a=m=0, b=c/2, nml,

Ref. 13, p. 71: plane stagnation flow: a =m =0, n = 3, b = 1/3,
c =1, G =9 (ref, 15).

Raf. 13, p. 74: Thres-dimenslonal astagnation point flow, axisymmetrical
cage: ammmO, nml, bme, @ =g (ref, 13).

200S NI VOVN
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TABLE I. - Concluded.
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SIMILARITY SOLUTIONS IN STATIONARY FOLAR COORDINATES

CASE II -

W=0, WO
U arhem® .
W [¢]

ern~1emé /2 cU 1/2
n ¥yl = ylvar , c KO
"
Ordinary (25) b(n + 1)}(FP'G') + am(F'2 - Eg—;1 1) - Eiﬁﬁ;—glfGF" - ¢F" = 0
differential
equations 2
(26) %H(1 - F2)+ M(F'G' - TFG") + bn(G'e) - bt 3) ggn - ca™ =0

Boundary F1{(0) = G'{0) = F(0) = G(0O) = 0; 1tm F'(N) = 1; 1im @'(N) = ©

conditions

—ron B

Projection of
mainstream
on surface

r = C, cirecular flow streamlines

Irrotation- [a(n + 1) =20
ality

Linearity (12} m =0 -
iIn u

Linearity glag Linear
in w 1b Always nonlinear

Separation 525; Not possible for this case -
of F and 26 a =0
¢

Comments and
references

a = 0, no flow

Ref. 13, p. 157, eq. (10.9), (discussing work of pef. 14):
amb=c¢c, m=0, n=1. F' here =G (ref. 13). G' here = F
(ref. 13)

NACA - Langley Field, Va.



